

APPSEC DEPLOYMENT

USE CASES
BY VERACODE

APPSEC DEPLOYMENT USE CASES

THERE’S MORE THAN ONE WAY TO DO APPLICATION SECURITY

Application security is like jazz: You can play it with any number of instruments, and there are a large number of

combinations. Your decisions will depend on the programming language, the type of application (web, mobile,

desktop, microservice), your development cadence, your development tool chain, your security stack, your level of

acceptable risk (by application), and the AppSec vendor you choose. As with a jazz band, it takes some experience

and skill to pick the right combination for your task. At Veracode, we’re here to help you with these decisions.

This document aims to show you different deployment use cases to give you some insights into how Veracode

typically integrates into the development processes. We’ll walk through several deployment use cases at VeraBank

Inc, a fictitious company, to discuss different deployment options.

FINDING THE RIGHT MIX OF ASSESSMENT TYPES

The most common ways to assess application security are:

 Static Analysis: Assessing the security of an application’s first-party code, in other words, scanning the binaries

or the source code of the code you have written yourself

 Software Composition Analysis: Assessing the security of an application’s open source code by highlighting

known vulnerabilities in these components

 Dynamic Analysis: Assessing the security of a web application by interacting with it and trying to exploit it

 Manual Penetration Testing: Assessing the security of an application through an ethical hacker who tries to

exploit the application

Unfortunately, you can’t just pick one of these assessment types and be done with it because they find different

things. The following table provides a high-level overview:

Capabilities Static Analysis Software

Composition

Analysis

Dynamic

Analysis

Manual

Penetration

Testing

Flaws in Custom Web Apps (CWEs) 

 

Flaws in Custom non-Web Apps (CWEs) 



Flaws in Custom Mobile Apps (CWEs) 



Known Vulnerabilities in Open Source

Components (CVEs)




1

Behavioral Issues (CWEs) 
2



Configuration Errors (CWEs)

 

1 Penetration testing can find known vulnerabilities in open source components but this may not be as rigorous as

Veracode Software Composition Analysis, which not only systematically flags CVEs but also crawls commit

histories and bug tracking tickets in open source projects to identify silent fixes of security issues.

2 This is not true for all static analyzers. Veracode can exercise the code and manipulate the UI for behavioral

analysis in mobile applications.

Business Logic Flaws (CWEs)



Can be automated (scalability, cost, speed)   

For more details on this subject, please read the Veracode white paper Your Guide to Application Security

Solutions.

WHEN TO USE WHICH ASSESSMENT TYPE

Veracode offers a breadth of application security assessment types. In this section, we outline where to apply which

technology, independently of whether these are from Veracode or an alternative source.

 Assessment Type Advantages Limitations

Static Analysis (with

Entire Application in

Scope)

 Very broad coverage of flaw types

(CWEs)

 Looks at the flaws in the context of the

entire application, analyzing all the

data paths.

 Can scan any type of application,

including web, mobile, desktop, or

microservices

 Scanning frequency should be in line

with how often developers can review

scan results

 Use static analysis as part of

Continuous Delivery pipeline and file

security issues in bug tracking system

 Does not provide instant feedback to

developers as they’re coding.

 Cannot find CWEs related to server

configurations

 Limited to code that developers can

remediate. Does not report

vulnerabilities in 3rd party

components (see: SCA).

Background Knowledge

Synchronous vs. Asynchronous Scanning

Most teams think of scanning as a gating factor before release. We call this synchronous scanning, and it’s a good

idea to do this if you don’t release more than once a day and haven’t implemented any other ways to scan your code

earlier in the SDLC.

However, some teams release several times a day so that some scan types, for example a full static analysis policy scan

or even a dynamic analysis scan, take longer than you have time for. On average, most of our static analysis scans

complete in less than 15 minutes, while 90% of dynamic analysis scans complete in less than 24 hours (they have to

scan at a reasonable speed so they don’t crash your web application). In these cases, we recommend that you use

Veracode Greenlight to test your code earlier on, either in the IDE or with every check-in. Veracode Greenlight scans

only the file you’re working on, so it only triggers on flaws that are fully contained in that file and where the source

and sink don’t spread over several files. This still catches a very good amount of flaws. In addition, if you release very

often, you are only making very small changes to the code each time, which reduce your risk of introducing a new

flaw. In these cases, it is often an acceptable level of risk to release to production after Veracode Greenlight has

completed (which takes seconds), to run the longer scans overnight and to address any flaws that may have escaped to

production in the morning. We call this asynchronous scanning.

Whether you’re leaning towards speed or deep scanning ultimately depends on your development style and risk

acceptance, but it’s good to keep both models in mind when assessing the best way to introduce application security to

a development team.

https://info.veracode.com/guide-to-application-security-solutions.html
https://info.veracode.com/guide-to-application-security-solutions.html

 Can track flaw history: new, open,

fixed. Important for trending reports

on mean time to remediation.

 Suitable for compliance purposes

Static Analysis (on File

Level)

 Recommended for development teams

who want to shift left in application

security testing by scanning early and

often. Scans usually complete in

seconds.

 Best suited when scanning multiple

times a day

 Recommended for use by developers

working on the new code for

continuous flaw feedback and

remediation guidance

 Developer friendliness: enhances

learning, allows developers to find and

address issues without exposing flaws

in reports.

 Scans individual files, so can only

detect vulnerabilities where source

and sink are in same file

 Typically not suited for compliance

scanning because scope limitations

may cause false negatives

 Does not report vulnerabilities in 3rd

party components

Dynamic Analysis  Scans web applications without having

to integrate with the SDLC

 Ability to scan in pre-production and

production

 Suitable for compliance purposes

 Scan times are often between 12 and

24 hours for complex applications, so

recommended for overnight scans, or

for asynchronous scanning

Software Composition

Analysis

 Finds vulnerabilities in 3rd party

components

 Scans take seconds or minutes

 Can scan any type of application,

including web, mobile, desktop, or

microservices

 Suitable for compliance purposes

 Does not find flaws in first-party code

Manual Penetration

Testing

 Works on all types of applications and

languages

 Only assessment type to find business

logic flaws that require understanding

of the application’s business

functionality and impact

 Suitable for compliance purposes

 Slow, human-driven process,

typically about five to 10 days per

application

GENERAL VERACODE SCANNING RECOMMENDATIONS

The following recommendations are specific to Veracode solutions:

 Policy scans: These should represent the code deployed to production. With Veracode Static Analysis, any

code that gets scanned that isn’t in production should be scanned in a developer sandbox. For Veracode

Dynamic Analysis, there is no concept of a sandbox, but you can conduct policy scans for the pre-

production URL in a different application profile from the production URL to keep them separate. For

Veracode Software Composition Analysis, you can scan every commit and simply compare the hashes

values of the binaries to the software deployed in production.

 Sandbox scan promotion: This happens in Veracode Static Analysis when the developer sandbox scan is

clean, i.e., no policy affecting flaws remaining or unmitigated. It must happen as close to release as

possible to satisfy the point above. This could be as part of the release process. If the release gets cancelled,

the promoted scan must be deleted. That might mean deleted in Veracode, and in any external reporting

tool.

 Periodic policy scanning: Code that has been deployed into production should be scanned in a policy scan

on a regular basis, regardless of whether there has been a code change. This ensures that Veracode

customers benefit from enhancements to the scanning technology. Assuming you have not touched the

code, anything between monthly and annual scanning of the application is adequate, depending on the

criticality of the application.

 Scanning every commit: For scanning on every commit, we generally recommend using Veracode

Greenlight, which provides a faster, light scan of your code. We generally don’t recommend scanning

every commit with Veracode Static Analysis, Veracode Dynamic Analysis, and Veracode Software

Composition Analysis. If you are releasing more than daily, we recommend scanning nightly so scans don’t

overlap and cause errors in the pipeline due to existing scans running.

 Pro Tip: Use the Commit ID and the CI Job ID in the scan name, makes it easier to track when it has been

scanned and what caused it to be scanned.

CASE STUDY: VERABANK, INC.

VeraBank, Inc. is a fictitious global bank whose investment strategy is primarily driven by investing in the booming

application security testing market but they also do retail banking and commodities trading. Founded in the 1970s,

they have a wide range of technologies, all the way from microservices written in Go and mobile applications

written in Xamarin to COBOL mainframe applications. Most of their development is in-house, using a wide range of

technologies for software development, driven partially by individual team preferences and necessities and partially

by technologies brought in through acquisitions. VeraBank chose Veracode for its application security strategy and

has been using its solutions for over a year now.

VERABANK INFOSEC SYSTEMS AND PROGRAMS

The VeraBank security team wants to give their software engineering teams as much leeway as possible to account

for their specific needs and technologies. However, they also need to keep an overview of the entire application

security landscape for the company. Their CISO demands monthly updates and briefs the board on a quarterly basis

about progress on security and compliance. They also need to provide evidence of compliance to external auditors,

e.g., for PCI DSS.

Because not all applications require the same risk level, VeraBank has classified each application’s appropriate risk

level and created custom policies for acceptable risk in the Veracode Platform.

VeraBank uses Splunk to track their governance, risk, and compliance progress. The Veracode Platform integrates

with Splunk to report which applications are in and out of compliance. This helps provide a clear picture across

static, dynamic, and software composition analysis, as well as manual penetration testing results, in one view.

VeraBank also uses Splunk as their SIEM to help analyze risks and threats. They have integrated Splunk with the

Veracode Platform to help track vulnerabilities in their applications and elevate the threat level when they see an

exploit for that application. VeraBank has also set up some dashboards to track high-level vulnerability data in

Splunk to observe trending.

Because the VeraBank InfoSec team doesn’t have the bandwidth for program managing the engineering teams, they

have signed up for Veracode Security Program Management (SPM). When they first started up their AppSec

program, their SPM was very helpful in categorizing their applications by risk level and defining appropriate

policies. Now, they have a scheduled call with their SPM every month to go over trends in the program and which

engineering teams to onboard next. Between check-in calls, the SPM works with VeraBank’s engineering teams to

get them onboarded into the Veracode Platform, get their first scans running, and assists with integrations with the

SDLC.

Because VeraBank operates globally with a distributed IT team, it has been tough to even get a handle on all of the

applications present inside the company. VeraBank uses Veracode Discovery to scan the Internet for unknown

VeraBank websites and then leverages Veracode Dynamic Analysis to conduct a security scan of each application

to see if there are any vulnerabilities that put the company at risk. This has helped VeraBank to identify unknown

applications, which are then onboarded into the official VeraBank AppSec Program. They even identified some

websites that were risky, but outdated and no longer needed, so the bank shut them down, saving operational cost in

the process.

VeraBank uses the Imperva Web Application Firewall (WAF) in front of their most critical applications for

compliance reasons and to fend off application-level attacks. Whenever they find a vulnerability in their public-

facing web apps that they cannot fix immediately, they use the integration with Veracode Dynamic Analysis to

create a virtual patch for the application until the code can be fixed and deployed.

PROVIDING APPSEC KNOWLEDGE ACROSS ENGINEERING AND SECURITY

TEAMS

Although AppSec is an important topic for VeraBank, most of their developers had never received secure coding

training, either on the job or as part of their computer science degree. VeraBank started out by licensing Veracode

eLearning for all of their developers, which gave them a baseline training for secure coding. This brought up the

level of awareness for AppSec across the organization, helped VeraBank comply with PCI DSS requirements, and

added an important item to many developers’ resumes.

After the first year, VeraBank’s security team saw that cross-site scripting and SQL injection attacks were still very

prevalent in their code, so they organized a custom training to help educate their engineering force. This was

delivered as the Veracode Application Security Workshop for engineers at their headquarters and as Veracode

Instructor-led Training via WebEx for remote employees.

While VeraBank has some AppSec expertise in-house, they couldn’t scale to meet the increasing demand from their

engineering teams to assist with code fixes or to review mitigations for their auditors. They signed up for Veracode

Application Security Consulting so that their developers could schedule developer consultations with an AppSec

expert. In these 45-minute sessions, the developer shares the security findings and optionally their source code

snippet via WebEx to get suggestions on how to best fix a vulnerability.

In some cases, when flaws cannot be fixed directly but where compensating controls mitigate the exploitability of

the flaw, software engineers can submit a mitigation for a flaw. The challenge is that these should be reviewed by an

independent, skilled person so they stand up to audits. VeraBank could not provide a timely turnaround for

mitigations through their internal security team, so they signed up for the Veracode Mitigation Proposal Review

package, which outsources this process and provides a clean audit trail.

USE CASE 1: ONLINE TRADING PLATFORM ON MICROSOFT .NET MONOLITH

IN AZURE, BEING RE-ARCHITECTED TO MICROSERVICES

VeraBank developed its own online securities trading platform, specialized in trading a crypto currency called

VeraCoin, which is backed by unicorn horns – a rare and financially stable commodity. The trading platform is

based on .NET technology, coded in C#, and hosted in Microsoft’s Azure cloud environment. The team is

restructuring its monolith into microservices, and they have decided to run a two-pronged approach: Fix only critical

security issues in the monolith, but ensure that they don’t introduce new vulnerabilities in the new microservices

code.

They release their new microservices code several times a day, with a focus on speed of innovation to help them

attract and retain customers in the hot crypto currency market. They run a pure Microsoft stack: Microsoft Visual

Studio is their IDE. They use cloud-based Microsoft Azure DevOps (formerly known as Microsoft Visual Studio

Team Services) to file bug tickets, store their code, and deploy it directly to Microsoft Azure.

While using the same type of SDLC tooling for both microservices and monolith, their monolithic code is released

only once a month.

Static Analysis in

General

VeraBank uses Veracode Static Analysis to scan all parts of the application, both the

monolith and the microservices, but the monolith and the microservices are set up in

separate application profiles on the Veracode Platform because they are coded by

different teams and VeraBank wants to apply different types of profiles to them. The

monolith will not be supported for much longer, so VeraBank decided to only

retroactively fix critical and high vulnerabilities; the policy was adjusted accordingly.

The microservices, which are new developments, have a stricter policy that also fails a

build on medium vulnerabilities.

Static Analysis on

Monolith

For the team maintaining the monolithic code, they upload their compiled application to

the Veracode platform, and start a static analysis scan using the Veracode Visual Studio

Plugin. The scan is performed in a developer sandbox, a feature of Veracode Static

Analysis that enables engineering teams to scan code privately without promoting the

scan result to Splunk. When the policy-affecting issues found in the sandbox scan have

been resolved, and all mitigations have been approved, they promote the sandbox scan to

a policy scan. This action updates the version and status in Splunk, and the software is

then released to Microsoft Azure. Sandbox scans occur before each feature branch is

merged back into the main branch; policy scans occur once a month before each release.

This process helps keeping up the speed of innovation by moving functionality into

production while ensuring that flaws that haven’t been caught by other processes are

flagged to security in less than a day.

Use Case 1 - Monolith: Monolith with a lot of technical debt that is scanned less than once

a day. Developers use IDE plugin to scan in the Developer Sandbox without affecting

policies, then do policy scan before release. Microsoft Azure DevOps acts as source code

repository, build system, and ticketing system. Open source code is scanned with Veracode

Software Composition Analysis. Veracode Dynamic Analysis is run against the production

web server.

Static Analysis on

Microservices

To help keep up the development velocity, the microservices teams also use Veracode

Greenlight, which plugs into their Microsoft Visual Studio environment and

continuously finds newly introduced vulnerabilities as developers are writing code. This

greatly reduces the overhead for fixing vulnerabilities because developers can fix the

code right then and there. This has greatly increased the pass rate of the final policy

scans with Veracode Static Analysis. [Note that the monolith team decided not to use

Veracode Greenlight because it would highlight all legacy vulnerabilities as well, which

would be distracting because VeraBank is not intending to fix most of them.]

When finding a vulnerability with Veracode Greenlight, the developer can read a short

description of how to fix the vulnerability, including ‘recommended fix’ code snippets. If

that is not enough, she can view a short Veracode eLearning Tutorial specific to the

language and vulnerability. If there’s still any lack of clarity, she can schedule a

consultation call through Veracode Application Security Consulting.

Veracode Greenlight is also tied into the continuous integration pipeline and scans only

the source code files that have changed before each deployment, failing the build if

medium or higher vulnerabilities are detected. This helps the team to keep up their

velocity to beat the competition.

The team is comfortable deploying small code changes with lighter but faster security

scanning during the day. However, each night, all microservices are scanned with a full

policy scan using Veracode Static Analysis, which ensures that the entire application is

scanned as a whole.3 This may uncover more complex vulnerabilities, for example when

source and sink are not in the same project file. These vulnerabilities are then flagged to

developers as work items through their Azure DevOps boards and are addressed the next

morning. This risk was deemed acceptable for this type of application by the security

team.

Use case 1 – Microservices: Microservices are getting broken out of the monolith.

Diagram shows process for microservices, which are written from scratch. Developers

remove all medium and higher severity vulnerabilities as they code. Veracode Greenlight

added as a pipeline scan breaks the build if medium or higher vulnerabilities are found.

Veracode Static Analysis policy scans occur every night to ensure full application is

covered.

3 If VeraBank was not comfortable with doing a policy scan at this point, they could use a sandbox scan and

promote it to a policy scan once the application has passed. This depends on the preferred workflow of the company

and the downstream impact of failing policy.

Software

Composition

Analysis

Especially in its new microservices deployments, VeraBank uses a lot of open source

.NET components that it downloads from NuGet, a .NET package manager. To scan the

open source components of their code, they use a PowerShell Script to integrate

Veracode Software Composition Analysis into Microsoft Azure DevOps. The

PowerShell script downloads the current version of the Veracode Software

Composition Analysis agent and runs it on the code, reporting results back into the

Veracode Platform.

Dynamic Analysis

To catch any configuration errors and other runtime security issues on the VeraCoin

platform, VeraBank runs nightly dynamic scans using Veracode Dynamic Analysis.

They run these scans only on production to check for configuration vulnerabilities. Note

that it wouldn’t make sense to scan both in pre-production and production because this

team scans asynchronously, meaning they release while the scan is still running and

catch security issues later.

Penetration Testing

VeraBank conducts a penetration test on the platform after each major architecture

change, but at minimum once a year. Because they have opted for Veracode Manual

Penetration Testing, their test results for this application appear on the same Veracode

Platform portal as the automated assessments and are measured against the same policy

they set up for the automated assessments. This makes it easy for them to see if an

application passed policy because they don’t have to manually compare results against

their policy. Penetration testing results also automatically get promoted to Splunk.

Having all assessment results in one place dramatically simplifies their audits.

USE CASE 2: RETAIL BANKING SOFTWARE IN JAVA STACK WITH ON-PREMISE

DEPLOYMENT

VeraBank’s retail banking software is a monolith web app developed in Java. They release updates to the software

every two weeks. Their software has significant technical debt with many security vulnerabilities. Due to the

criticality of the application, and because it won’t be replaced or re-architected any time soon, they have decided to

burn down their technical debt, but they also want to ensure that they don’t introduce new vulnerabilities once they

have remediated all medium and higher flaws.

The development team uses Eclipse as an IDE. They use Jenkins as a build server to deploy to an on-premise

Apache Tomcat server. Bugs, including security issues, are tracked in Atlassian JIRA and assigned to the relevant

developers. Their code is stored in a Git repository.

Static Analysis

VeraBank uses Veracode Static Analysis to scan the application as one big application

profile. They scan feature branches first in the developer sandbox to enable the

development teams to see results without promoting them to Splunk. The developers do

this directly from the Veracode Eclipse extension. When the sandbox scans succeed,

they merge the feature branch to the main branch. The release manager then runs a

policy scan before releasing the software. This process is fully automated through

Veracode’s integration with Jenkins.

After they had fixed all of the medium and higher flaws, they mitigated all of the

remaining existing flaws as “acceptable risk” so that lower priority tech debt would not

fail policy.

The developers were effectively able to prioritize which vulnerabilities to fix first by

looking at the Fix First Analyzer, which classifies all vulnerabilities by risk level and

effort to fix.

Static Analysis Once

Tech Debt Has Been

Addressed

Over the first three months, the team has dedicated 20% of their capacity to reduce the

technical debt so that the application is now passing policy. After celebrating this

achievement, they decided that they would like to put measures in place to help them

address security issues before they are released. Fixing vulnerabilities earlier in the

SDLC significantly reduces cost and unplanned work, so they have added the Veracode

Greenlight extension to all Eclipse IDEs, which notifies them about vulnerabilities in

their code before they even commit it to the Git repository.

Several things are important to note: The team waited to roll out Veracode Greenlight

until they had burned down their technical debt because they would otherwise have had

to deal with too much noise in their IDEs. Going forward, they are only paying attention

to vulnerabilities that are showing up in newly written parts of the code, so Veracode

Greenlight is a good fit. Also, they are not using the Veracode Greenlight API in their

pipeline because they are not releasing several times a day, so the sandbox scans are

sufficient in providing automated results.

The regular scans using Veracode Static Analysis still continue to ensure a full

application audit before each feature branch pull request and each release.

Use Case 2: Java stack application where developers first down technical debt with

Veracode Static Analysis and then use Veracode Greenlight to ensure that they don’t add

new medium and higher severities to the code. Open source code is scanned with

Veracode Software Composition Analysis. Veracode Dynamic Analysis is run on both

production and pre-production.

Software

Composition

Analysis

The retail banking software is heavily leveraging Java open source components, which

have helped the team move faster because they don’t have to reinvent the wheel on

standard functionality.

To scan the open source code for vulnerabilities with Veracode Software Composition

Analysis, the team chose to use the binary upload method rather than the SCA agent.

This saves them one step because the binaries are already uploaded to the Veracode

Platform.

Dynamic Analysis

The release engineer runs dynamic analysis scans using Veracode Dynamic Analysis on

the complete application in pre-production before it is released. However, she also scans

the application in production to catch any drift between configurations in pre-production

and production.

Penetration Testing
This application changes relatively little over the course of a year, so VeraBank opts for

a single penetration test per year through Veracode Manual Penetration Testing.

USE CASE 3: VIRTUAL ASSISTANT MICROSERVICE USING JAVASCRIPT

VeraBank’s website front-end is written in JavaScript. The project’s developers use the Atom editor. The pipeline

is built on CircleCI. They use JIRA as a ticketing system but most communication on the team happens via Slack.

GitHub is the code repository. Releases happen once a day, typically in the morning so that the team can handle any

production issues while they are all in the office.

Static Analysis in

the Pipeline

This team has been building in application security from the start. The wanted to scan as

early as possible in the process. Because they are using the Atom editor, for which there

is no plug-in for Veracode Greenlight, they are building the Veracode Greenlight API

directly into CircleCI. Any flaws that are found after a check-in are automatically posted

to the #pipeline Slack channel through a custom script written by the DevOps engineers;

the build breaks for any flaws of medium or higher.

Static Analysis for

Auditing

The team is comfortable deploying small code changes with lighter but faster security

scanning during the day. However, each night the microservice is scanned with a full

policy scan on the code running in production using Veracode Static Analysis, which

ensures that the entire application is scanned as a whole. This may uncover more

complex vulnerabilities, for example when source and sink are not in the same project

file. These vulnerabilities are then flagged to developers in a JIRA ticket and are

addressed the next morning. This risk was deemed acceptable by the security team.

Static Analysis Once

Tech Debt Has Been

Addressed

The team has worked to reduce the technical debt so that the application is now passing

policy. They decided that they would like to put measures in place to help them address

security issues before they are released. Fixing vulnerabilities earlier in the SDLC

significantly reduces cost, so they have added the Veracode Greenlight extension to all

Eclipse IDEs, which notifies them about vulnerabilities in their code before they even

commit it to the Git repository.

Like in the previous use case, the team waited to roll out Veracode Greenlight until they

had burned down their technical debt because they would otherwise have had to deal

with too much noise in their IDEs. Going forward, they are only paying attention to

vulnerabilities that are showing up in newly written parts of the code, so Veracode

Greenlight is a good fit. Also, they are not using the Veracode Greenlight API in their

pipeline because they are not releasing several times a day, so the sandbox scans are

sufficient in providing automated results.

Software

Composition

Analysis

The microservice uses a lot of JavaScript open source components, which they are

scanning with Veracode Software Composition Analysis through an integration with

CircleCI with every commit. Security issues are dispatched to the developers via JIRA

based on priority thresholds defined in the policy.

Dynamic Analysis

VeraBank runs nightly pre-production dynamic scans using Veracode Dynamic

Analysis. The scans complete overnight so that results are ready before deployment in

the morning.

Penetration Testing
VeraBank has pentested this API through Veracode Manual Penetration Testing

before it was first released; the next annual test is already scheduled.

Security Attestation

VeraBank’s customers are very security conscious, especially since VeraBank’s

competitor had a data breach last year. VeraBank uses this as a marketing opportunity

and has listed the online banking app in the Veracode Verified Directory, showing third

parties that the application has undergone security scrutiny. It has also used the

Veracode Verified Seal on its website to promote the higher security level of its app.

VeraBank loved that this attestation was included in their licenses for their existing

Veracode solutions.

Use Case 3: Veracode Greenlight scans code from CircleCI with every pipeline build and

is integrated with Slack through a custom script to deliver results right back to the

developers. Results from Veracode Software Composition Analysis, Veracode Static

Analysis, and Veracode Dynamic Analysis are fed back to JIRA and reported to

developers.

USE CASE 4: LEGACY COBOL APPLICATION ON MAINFRAME

VeraBank started out in the 1970s, so it also has some legacy applications, such as its Mainframe application for

trading pork belly futures. The application is written in COBOL and only updated twice a year, so it does not make

sense for VeraBank to keep a full-time COBOL programmer on staff. Their development is outsourced to Ansgar, a

freelancer who just uses SlickEdit as an editor. He’s uploading the COBOL code to a private VeraBank GitHub

account.

Static Analysis

When Ansgar has updated and tested his COBOL app, he downloads the full source code

from GitHub and uploads it to the Veracode Platform to kick off a sandbox scan in

Veracode Static Analysis. He views all flaws directly in the Veracode Platform. If the

application passes policy, he promotes the sandbox scan to a policy scan and lets

VeraBank know that they can deploy it into production. Although these processes are

manual, it’s not worth it for Ansgar to automate them because he only has to go through

the process twice a year. If he wanted to automate them, he could use Veracode’s API

wrappers to automate the upload and get flaws delivered as tickets in JIRA.

Penetration Testing

VeraBank has scheduled a pentest through Veracode Manual Penetration Testing once

a year to ensure that the mainframe application is secure. The Veracode penetration

tester uses the results from the static analysis scan to go deeper, faster, providing a

higher-quality penetration test than a simple black box test.

Use Case 4: In this no-frills scenario, the developer uploads the COBOL code manually to

the platform and views the scan results right there.

VERACODE COVERS YOU FROM LEGACY APPLICATION TO BLEEDING EDGE

We hope that this document painted a picture of the flexibility of the Veracode Platform. Just as every jazz song is

interpreted slightly differently every time, every customer scenario is slightly different. After 11 years in the

business, Veracode has seen a lot of different scenarios in a constantly evolving landscape, so we have crafted a

solid platform with many assessment types and even more integrations.

How exactly you deploy Veracode depends on your programming languages, the types of applications, your

development cadence, your development tool chain, your security stack, and each application’s level of acceptable

risk.

If you are still shopping for an application security vendor, please discuss with your Veracode Solutions Architect

what she recommends for your various teams. If you are already committed to us, please work with your Veracode

Security Program Manager to develop a plan on how to onboard each one of your teams. We thank you for your

business!

